当前位置:首页 > DeepSeek技术交流 > 正文内容

DeepSeek算力需求暴降,为什么全球算力竞赛反而更疯狂了?

4周前 (02-17)DeepSeek技术交流56

春节期间,国产大模型DeepSeek-R1的横空出世,一度让人们看到了“降本增效”的曙光。DeepSeek-R1以更低的成本和算力需求,实现了世界一流的模型性能,打破了大模型领域“烧钱买芯片”的传统路径。


彼时彼刻,英伟达股价应声下跌,似乎印证了市场对算力需求放缓的预期,也宣告着“暴力堆算力”时代的终结。


然而,在通往AGI的征途上,算力真的不再重要了吗?至少,从硅谷科技巨头们的行动来看,答案是否定的——这场效率革命,正在将人类拽入更疯狂的算力竞赛。


一、 巨头加码:硅谷的“反效率”投资


与DeepSeek的算力焦虑不同,硅谷的科技巨头们显然没有对此产生任何遏制的担忧,反而在不断增加投入。1月底以来,谷歌、微软、Meta和亚马逊这四大科技巨头相继发布了最新财报。令人瞩目的是,他们不约而同地在财报中强调:2025年将加大在算力方面的投入。


谷歌母公司Alphabet在2025年的资本开支目标为750亿美元,较上年激增42%。微软同样表示,2025财年将在人工智能数据中心上投资800亿美元,并透露其对于算力投资的节奏保持谨慎,原因在于硬件的快速迭代。


Meta和亚马逊也分别在财报中披露了大幅增加算力投入的计划。Meta将其资本开支预算增加了66%,而亚马逊则计划在2025年投入1000亿~1050亿美元,主要用于AI和云服务领域。


面对DeepSeek,硅谷的四大科技巨头——谷歌、微软、Meta和亚马逊,以加码算力的方式回应了这一挑战。算力,似乎仍然是支撑未来AI技术发展的核心资源。



二、 杰文斯悖论在AI领域的再度应验


四巨头在算力上的持续投入,并非对DeepSeek视而不见。但亚马逊CEO Andy Jassy指出,推理成本的降低并不意味着总支出下降,“我们在云计算领域经历过类似情形”。微软CEO纳德拉则在社交媒体上引用了“杰文斯悖论”来表达他的观点。


如经济学家杰文斯所言:技术进步虽然提高了资源的使用效率,但需求的增加常常会导致总消耗量反而增加。


具体到实际,我们可以看到,过去在汽车领域,发动机热效率的提高使得车辆燃油消耗降低,但因使用成本降低,车主反而选择更多购车,最终导致石油的消耗量反而增加。


这一悖论同样适用于AI领域。当微软CEO纳德拉在X平台转发“杰文斯悖论”词条时,现实中正在上演着现代版的技术寓言:1850年,英国蒸汽机的热效率提升了三倍,煤炭消耗量却暴涨了十倍;而今天的R1模型将推理成本压缩了97%,全球的算力需求却因其高性价比反而呈现指数级膨胀。


更残酷的现实在于:DeepSeek-V3的混合专家架构(MoE)在推理环节,需要同时激活14个专家模块。这导致在线服务时,每个token生成需消耗0.78TFLOPs算力,较传统架构高出18%。


可以说,效率革命的B面,是更复杂的资源调度噩梦。


具体到实际数据,可以看到,DeepSeek API调用量在推出后迅速飙升。根据市场机构估算,DeepSeek每秒的推理算力需求已经接近1.6×10^19 TOPs。


而前不久,DeepSeek官方甚至发表声明,暂停其API充值服务,原因便是服务器算力资源紧张。



一系列数据的背后仍然依赖于强大的硬件支持。而DeepSeek的出现,没有抑制算力的需求,反而推动了更多企业和开发者投入更多资源以获得服务,加剧了算力资源的压力。


三、 DeepSeek的隐忧:算力之下的挑战


“成本创新”并不等于“削减算力”。DeepSeek-R1的训练成本大幅降低,但依然遵循着Scaling Law。在其之下,模型性能与算力需求可以近似看作一个正相关函数。过往的模型效率较低,性能提升缓慢;DeepSeek效率较高,性能提升更快。在这种情况下,企业大概率会因为效率更高而加大投入,而非减少投入。



而DeepSeek在算力方面的努力远未结束。随着硬件和算法的不断进化,DeepSeek依然会通过创新优化降低算力需求,但从当前的趋势来看,算力的需求依旧高涨。


与其担心算力过剩,我们或许更应该关注的是:当算力和效率都得到提升时,优质训练数据是否会成为新的瓶颈?


微软研究院的最新模拟显示,要保持大模型性能的指数增长,2026年需要430艾字节(EB)的高质量训练数据——这相当于把人类现存所有文字资料复制2300遍。


为便于理解,依然以汽车为例,当汽车油耗(模型效率)和汽油(算力)都充足时,如果道路(优质训练数据)不足,就会导致“堵车”,出行速度无法进一步提升。


当科技巨头们开始不计代价地购入算力,优质数据的焦虑,正在变异为更本质的危机。


四、产业变局: 本地部署的浪潮


DeepSeek暂停API充值服务,引发了用户对其算力资源的担忧,但在另一方面也意外激活了本地部署的第二战场。



微软率先宣布将针对NPU优化的DeepSeek R1版本直接嵌入Windows 11 Copilot+ PC,让开发者可在本地构建AI应用。英特尔则表示其Ultra系列处理器已实现R1-7B蒸馏模型的本地推理,延迟控制在300ms以内。而国内厂商中,华为、轨迹流动、阿里、知乎等互联网公司也相继宣布部署DeepSeek模型。


甚至,腾讯“元宝”与百度“文小言”也官宣将接入DeepSeek-R1模型。


DeepSeek无疑为LLM大模型的发展提供了新的思路,但这无法从根本上消除全球范围内的算力焦虑。而这场静默的本地部署与算力之争,亦将持续下去。


写在最后:算力竞赛,远未结束


DeepSee-R1的出现,证明了算法优化和工程创新的重要性,也让我们看到了“轻量级颠覆”的可能性。


然而,DeepSeek并不能终结算力竞赛。相反,算力依然是核心驱动力。但这场竞赛将不再是单纯的“堆料”,而是算法与算力的双重博弈。谁能更好地平衡效率与投入,谁就能在这场竞赛中占据优势。


在这场没有终点的马拉松里,DeepSeek既是破局者也是催化剂。它用算法利刃劈开算力铁幕,却释放出更汹涌的欲望洪流……


本文来自微信公众号:观弈行研,作者:我是叁叁啊


“DeepSeek算力需求暴降,为什么全球算力竞赛反而更疯狂了?” 的相关文章

DeepSeek能干什么?搜论文、学代码……多所高校接入的DeepSeek“满血版”有哪些神奇之处?

DeepSeek能干什么?搜论文、学代码……多所高校接入的DeepSeek“满血版”有哪些神奇之处?

新学期,多所高校掀起了智能化革新浪潮。中国人民大学、华东师范大学、北京邮电大学等高校正式接入了DeepSeek“满血版”。这个拥有6710亿参数的“超级大脑”,正在以每周迭代的领域知识和强大的“思维链...

湘江新区多领域拥抱DeepSeek,“解锁”发展新路径

湘江新区多领域拥抱DeepSeek,“解锁”发展新路径

红网时刻新闻记者 王娟娟 长沙报道随着DeepSeek的爆火,一场围绕人工智能大模型的产业变革正悄然兴起。在新技术浪潮来袭之际,湘江新区拥抱DeepSeek的热情高涨。当政务遇上DeepSeek,将带...

DeepSeek什么都好,但真的不建议这样用……

DeepSeek什么都好,但真的不建议这样用……

进入三月,DeepSeek的热度有增无减,从最初面市到现在一个多月,首批用户体验后的反馈期终于来了。我身边的朋友都用疯了!有用来算命的,家里祖孙三代算到再无可算,DeepSeek娃说命里缺金,家长也管...

DeepSeek引发市场跷跷板!基金经理“忙不停”

DeepSeek引发市场跷跷板!基金经理“忙不停”

“DeepSeek正在引发世界对中国AI产业、中国科技资产,甚至中国整体资产的价值重估。”在接受券商中国记者采访时,一位基金经理满怀激动地讲道。中国AI发展的主流叙事已经逐渐从追赶转向超越,这一认知的...

政通智合·数聚泉城 共创政务AI新场景 山东移动DeepSeek政务场景共创沙龙举办

政通智合·数聚泉城 共创政务AI新场景 山东移动DeepSeek政务场景共创沙龙举办

3月7日,山东移动与华为联合举办DeepSeek政务场景共创沙龙。本次沙龙以“政通智合·数聚泉城 共创政务AI新场景”为主题,邀请省市大数据局等相关政府单位的领导及专家齐聚泉城济南,在DeepSeek...

ST广网:公司“秦岭云”平台已完成DeepSeek本地化部署

ST广网:公司“秦岭云”平台已完成DeepSeek本地化部署

每经AI快讯,有投资者在投资者互动平台提问:董秘您好!请问贵公司是否已经部署了DeepSeek?如果已经部署了,请问主要应用于哪些具体的业务?公司接入DeepSeek有哪些成本、收益方面的考量?如果公...